INTRODUCCION A LOS ESPACIOS DE HILBERT

@BECEDARIO - 9788496560536

Matemáticas Estudios generales

Sinopsis de INTRODUCCION A LOS ESPACIOS DE HILBERT

El presente volumen encierra un curso de introducción a los espacios de Hilbert, conteniendo además en los primeros temas un acercamiento a lo que en matemáticas se conoce como Topología (estudio de la proximidad, límites y continuidad de forma abstracta). El soporte operativo es el producto escalar en un espacio vectorial bien real, bien complejo, pero abandonando la hipótesis de finito-dimensionalidad que habitualmente se incluye en los primeros cursos de Algebra. Y es justamente este avance hasta la dimensión infinita el que precisa de nociones topológicas: los subespacios que van a interesarnos son los que en Topología se llaman cerrados, y las aplicaciones lineales sobre las que centraremos la atención serán las que llamaremos continuas. En dimensión finita, todo subespacio es cerrado y toda aplicación lineal es continua; en la infinita, a veces sí, a veces no. Los Espacios de Hilbert, creados por el matemático David Hilbert, fueron inmediatamente formalizados (es decir, pasados del concreto al abstracto) por Johann von Neumann y se convirtieron en el soporte matemático de la Física y la Mecánica Cuánticas del primer cuarto del siglo XX

Ficha técnica


Editorial: @Becedario

ISBN: 9788496560536

Idioma: Castellano

Número de páginas: 167

Encuadernación: Tapa blanda

Fecha de lanzamiento: 19/11/2007

Año de edición: 2007

Plaza de edición: Badajoz

Especificaciones del producto



Escrito por Andrés Raya Saro


Descubre más sobre Andrés Raya Saro
Recibe novedades de Andrés Raya Saro directamente en tu email

Opiniones sobre INTRODUCCION A LOS ESPACIOS DE HILBERT


¡Sólo por opinar entras en el sorteo mensual de tres tarjetas regalo valoradas en 20€*!

Los libros más vendidos esta semana